A Note about the Critical Bandwidth for a Kernel Density Estimator with the Uniform Kernel
نویسندگان
چکیده
Among available bandwidths for kernel density estimators, the critical bandwidth is a data-driven one, which satisfies a constraint on the number of modes of the estimated density. When using a random bandwidth, it is of particular interest to show that it goes toward 0 in probability when the sample size goes to infinity. Such a property is important to prove satisfying asymptotic results about the corresponding kernel density estimator. It is shown here that this property is not true for the uniform kernel.
منابع مشابه
Asymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data
Kernel density estimators are the basic tools for density estimation in non-parametric statistics. The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in which the bandwidth is varied depending on the location of the sample points. In this paper, we initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...
متن کاملComparison of the Gamma kernel and the orthogonal series methods of density estimation
The standard kernel density estimator suffers from a boundary bias issue for probability density function of distributions on the positive real line. The Gamma kernel estimators and orthogonal series estimators are two alternatives which are free of boundary bias. In this paper, a simulation study is conducted to compare small-sample performance of the Gamma kernel estimators and the orthog...
متن کاملA Berry-Esseen Type Bound for the Kernel Density Estimator of Length-Biased Data
Length-biased data are widely seen in applications. They are mostly applicable in epidemiological studies or survival analysis in medical researches. Here we aim to propose a Berry-Esseen type bound for the kernel density estimator of this kind of data.The rate of normal convergence in the proposed Berry-Esseen type theorem is shown to be O(n^(-1/6) ) modulo logarithmic term as n tends to infin...
متن کاملSome Asymptotic Results of Kernel Density Estimator in Length-Biased Sampling
In this paper, we prove the strong uniform consistency and asymptotic normality of the kernel density estimator proposed by Jones [12] for length-biased data.The approach is based on the invariance principle for the empirical processes proved by Horváth [10]. All simulations are drawn for different cases to demonstrate both, consistency and asymptotic normality and the method is illustrated by ...
متن کاملAlmost Sure Convergence of Kernel Bivariate Distribution Function Estimator under Negative Association
Let {Xn ,n=>1} be a strictly stationary sequence of negatively associated random variables, with common distribution function F. In this paper, we consider the estimation of the two-dimensional distribution function of (X1, Xk+1) for fixed $K /in N$ based on kernel type estimators. We introduce asymptotic normality and properties and moments. From these we derive the optimal bandwidth...
متن کامل